The Plancher Rearrangement of 2,3-Disubstituted 3H-Indoles

By Y. KANAOKA,* K. MIYASHITA, and O. YONEMITSU

(Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan)

Summary The Plancher rearrangement of 3H-indoles has been quantitatively examined in polyphosphoric acid at 150°.

ALTHOUGH the Plancher rearrangement is one of the well known "name reactions,"1 information on its nature has been limited. In connection with studies on 3H-indoles,² we report some quantitative studies on the reaction.

Compound (1a) (polyphosphoric acid, 150°, 2 hr.) gave (gas chromatography) a mixture of (1a) and (2a) of constant ratio $K = (1\mathbf{a}) : (2\mathbf{a}) = 3.5$. Under the same conditions, (2a) gave the same mixture: the rearrangement is therefore an

equilibrium (Scheme 1). The fact that the value of K for (1b) and (2b) is 0.83 indicates that the equilibrium is highly

Table	1.†	$\begin{array}{l} Equilibrium \\ \mathrm{R}^{3} = \mathrm{Me}, \end{array}$	$R^2 = p - X$	of aryl-: •C ₆ H ₄ -)	3H-indol	es (I;	$R^1 =$
			-	~~			

x	Cl	F	н	Me	MeO
K	$2 \cdot 2$	1.5	1.4	0.50	0.32

dependent on the substituents. The only quantitative study of the reaction³ was re-examined with (1c) and (2c) (Table 1) as substrates: we confirm the results, but find the ratio to be 1.4, not 2.3.

Systematic alteration of the p-substituent in 2-phenyl-3,3-dimethyl-3H-indoles demonstrates the polar effect on the reaction (Table1). Electron-donating substituents decrease the K values, apparently through mesomeric stabilization of the N-protonated species, and vice versa. Interesting ring-isomerism (Scheme 2) is generally observed under these conditions (Table 2). The equilibrium point is highly sensitive to relative ring size.

TABLE 2.† Equilibrium constants of ring-isomerism

n	4	5	6
(3) : (4)	0.09	28	0.80

† Satisfactory analytical and spectral data were obtained for all compounds.

(Received, August 26th, 1969; Com. 1313.)

¹ P. L. Julian, E. W. Meyer, and H. C. Prins, in "Heterocyclic Compounds," ed. R. C. Elderfield, Wiley, New York, 1952, vol. 3, p. 1; M. Nakazaki, *Bull. Chem. Soc. Japan*, 1960, 33, 461; M. Nakazaki, K. Yamaoto and K. Yamagami, *ibid.*, p. 466; M. Nakazaki, *ibid.*, p. 472; A. H. Jackson and P. Smith, *Tetrahedron*, 1968, 24, 2227.
² Y. Kanaoka, K. Miyashita, and O. Yonemitsu, *Tetrahedron*, 1969, 25, 2752.
³ F. J. Evans, G. G. Lyle, J. Watkins, and R. E. Lyle, *J. Org. Chem.*, 1962, 27, 1553.

1365